基于 PCA 的相机响应函数模型标定算法

都 琳1,孙华燕2,张廷华2,王 帅1

(1. 装备学院研究生院,北京 101416;
2. 装备学院光电装备系,北京 101416)

摘 要:许多计算机视觉应用的算法都需要对拍摄场景高动态范围的幅亮度信息进行精确的测量, 成像系统的相机响应函数能够建立拍摄图像强度信息与场景辐亮度之间的严格映射关系,是高动态 范围图像融合的关键技术。文中分析相机响应曲线的共同特点,结合相机响应函数固有的约束条件, 建立相机响应函数的理论空间模型。首先,利用主成分分析法对已有的相机响应数据库进行分析,结 合相机响应函数的约束条件建立响应函数的低参数经验模型;然后,根据输入图像选择合适的参数数 量;最后,利用不同曝光量的输入图像通过最小二乘法求解建立响应函数模型的系数,从而对相机响 应函数进行标定。该算法能够通过对少量的采样点进行插值获得精确的相机响应函数,同时能够对任 意的场景通过拍摄多曝光量图像精确地标定相机响应函数。通过对实际拍摄的图像进行相机响应函 数标定实验,验证了该算法的有效性,并证明该算法保持高精度的同时计算效率也较高。

关键词:相机响应函数; 低参数经验模型; 主成分分析

中图分类号: TP391 文献标志码: A DOI: 10.3788/IRLA201645.1026001

Calibration camera response function model algorithm based on principal component analysis

Du Lin¹, Sun Huayan², Zhang Tinghua², Wang Shuai¹

(1. The Institute of Graduate Student, The Academy of Equipment, Beijing 101416, China;
2. Department of Photoelectric Equipment, The Academy of Equipment, Beijing 101416, China)

Abstract: Many computer vision algorithms need to measure the scene radiance accurately, and the camera response function can achieve this result by establishing the mapping between image brightness and scene radiance. Camera response function calibration is the key to high dynamic range image fusion. The properties that all camera response functions share were analyzed in the paper, which helps us to find the constraints that any camera response function must satisfy and establish the theoretical space model of camera response function. Firstly, the database of real-world camera response functions was analyzed by principal component analysis algorithm and low-parameter empirical model of response was established combined with constraints; secondly, appropriate parameter number was chosen according to input images; finally, the coefficients to the low-parameter empirical model of camera response function was solved by least square method. The algorithm proposed in this paper could establish camera response function of the imaging system accurately by interpolating to sparse samples or multiple images with

收稿日期:2016-02-15; 修订日期:2016-03-15

作者简介:都琳(1988-),女,博士生,主要从事高动态范围图像处理方面的研究工作。Email: daiqisundu@163.com

导师简介:孙华燕(1963-),女,教授,博士生导师,博士,主要从事光电信息处理与对抗方面的研究工作。

different exposures in arbitrary environment. The effectiveness of this camera response function calibration algorithm was verified by different experiments, which proved high-accuracy and high computational efficiency of this algorithm.

Key words: camera response function; low-parameter empirical model of response; principal component analysis

0 引 言

高动态范围成像技术能够避免因为拍摄方向如 逆光和曝光量的不同而使图像存在亮度和色差影响 真实场景的信息采集^[1-2],有利于复杂环境下获得更 高的成像质量,因此被广泛应用于模式识别、智能交 通系统、遥感遥测、军事监视侦察等众多领域,具有 重要的研究价值^[3]。相机响应函数标定是高动态范 围成像技术的关键步骤,能够获得真实场景的辐亮度 与获得图像强度信息之间的映射关系,从而通过该映 射关系获得拍摄的真实场景的高动态范围图像^[4]。对 相机响应函数所共同适应的特性以及约束条件进行 研究具有重要的意义。

Mitsunaga 和 Nayar¹⁵利用多项式近似描述相机 响应曲线、提出任何响应函数均可用高阶的多项式 进行描述,但标定精度有限。Mann S和 Picard RW^[6]对 相机的响应函数做出了严格的限定,在得到交叉直 方图之后,可以通过回归的方法来获得该点的映射 关系。Debevec 和 Malik¹⁷提出的相机响应函数标定 算法是较为经典的算法,目前很多相机响应函数标 定算法是基于此基础上进行改进的,该算法假设场 景是静态的并且忽略光照变化,针对各帧图像进行 采样点筛选以满足约束条件,进而利用奇异值分解 法求解最小二乘法建立的超定方程,从而获得拍摄 场景辐照度与图像亮度之间的映射关系即相机响应 函数。Grossberg MD和 Nayar 提出基于直方图取样 的相机响应函数标定算法^[8],该算法通过匹配直方 图百分位数而不是图像的位置来获得相机响应方 程,基于直方图的算法不对优先曝光的配准区域进 行处理,并且避免了场景和相机的晃动给相机响应 曲线拟合带来的影响。章卫祥等¹⁹¹在 Mitsunaga 和 Navar 提出的多项式模型的基础上,增加了图像亮度 为0映射到场景亮度也为0的限制条件,并改进了 迭代结束条件。舒妮等凹充分利用每幅图像的像素

信息,采用最小二乘法分别拟合出图像序列与第一 幅图像像素值的关系曲线,进而利用该曲线进行相 机响应曲线拟合,该算法减少了对图像序列采样的 过程,避免了拟合出的相机响应曲线随采样点变化, 曲线变化大、不稳定的问题。

目前大多的相机相应函数标定算法是利用目标 的多曝光图像序列进行相应函数的标定,但多是针 对静态场景有效,且图像采样信息量丰富的情况下 精度较高,但实际情况往往拍摄场景单一采样信息 不足,从而限制了成像系统响应函数的标定精度。相 机响应函数标定算法发展流程如图1所示。

哥伦比亚大学的 Grossberg M D 和 Nayar S K 已 经收集了部分相机的响应函数建立理论数据库 DoRF(Database of Response Function)。结合已有的数 据库 DoRF 中的先验信息以及相机响应理论空间的 约束条件可以建立一个低参数的经验响应模型 EMoR(Empirical Model of Response),利用该模型可以 对任意场景采集的不同曝光量图像进行相机响应函 数的高精度标定。

1 基本原理

1.1 相机响应函数的理论空间

相机响应函数 (Camera Response Function, CRF) 是成像系统如相机在实际成像过程中所受到的各种

线性与非线性关系的总和,用于表示采集图像强度 信息与真实场景辐亮度之间的映射关系。该函数模拟 了图像获取处理过程中非线性影响,如非线性动态范 围的压缩与量化。相机响应函数具有固定不变性、非 线性性、光滑连续性以及单调递增的性质^[1]。

假设:(1)获得的图像中每个像素对应的相机 响应函数是相同的;(2)相机响应的范围是从 B_{MIN} 到 B_{MAX};(3)假设归一化的响应函数是单调的。

满足以上三点假设条件,定义归一化的相机响 应函数空间为:

$$W_{\text{RF}}=\{f|f(0)=0, f(1)=1, f 单调递增\}$$
 (1)

任何辐照度方程f可以看做是对一组固定增加 的辐照度级别采样获得的向量,从而f变为有限维 的向量: $(B_1, \dots, B_P)=(f(E_1), \dots, f(E_P))$ 。设置最亮的采 样辐照度为 $E_P=1$ 。

由于响应函数的附加约束规定是单调递增的, 即响应函数的一阶导数为正。一个锥体集合具有这 样的性质:其中的元素的正的线性组合仍然属于该 集合,因此单调递增的响应函数能够通过锥体近似 表示。利用向量表示相机响应函数,结合相机响应函 数的固有性质,所有的响应函数必须处于函数空间 中的一个正锥和一个超平面的交集形成的凸集当 中。相机响应函数空间可视化模型如图2所示。

图 2 相机响应函数空间可视化模型 Fig.2 Visual model of camera response function space

归一化响应函数 $B_p=f(1)=1$,因此所有的响应向 量都应处于图 2 中 W_1 超平面中。定义任意两个超平 面 W_1 中的响应向量 $f 和 f_0$,两个向量之间的差异 h= $f-f_0$ 平行于经过原点的超平面 W_0 ,因此任意的响应 函数可表示为 $f=f_0+h$,式中 f_0 是基本响应函数,。

通过约束条件可以得到响应函数 W_{RF} 是椎体 Λ 与超平面 W₁ 的交集:

$$W_{\rm RF} = W_1 \cap \Lambda \tag{2}$$

公式(2)中表示超平面和锥体获得的交集仍为凸的。 如果 $p,q \in W_{RF}, 0 \le \alpha \le 1, 则 \alpha p + (1-\alpha)q \in W_{RF}$ 。将权 重设为正的,响应函数的线性组合仍为响应函数。任 何响应函数集合的平均也仍为有效的响应函数,所 以可通过建立线性不等式组获得近似的响应函数集 合。综上所述,可以通过建立线性不等式组,采用合 适的最优化算法获得任意响应函数 $f \ne W_{RF}$ 中的近 似方程。

1.2 相机响应函数近似模型

即使响应函数的理论空间 W_{RF} 限制为椎体与超 平面的交集,但其仍然是无限维的。有时理论空间中 的响应函数在实际中并不存在,所以研究如何利用 W_{RF} 有限的参数集近似表示真实的响应函数具有重 要的意义。无论利用何种方法进行建模,都需要选择 参数维数 M 对模型进行描述,选择的参数维数越 大,模型越能精确地描述 W_{RF} 中的响应函数,但计算 量也随之增大。

最简单的描述方法即利用公式(2)对 W_{RF} 进行描述,令 W₁=f₀+W₀,对于向量空间 W₀ 而言任何一种参数的选取都会获得一个近似模型,M 维近似模型如公式(3)所示:

$$f_0(E) + \sum_{n=1}^{M} c_n h_n(E)$$
 (3)

式中:*c*₁,…,*c*_M是模型的参数。可通过已标定真实存 在的响应函数信息结合后续优化算法确定近似模型 的合适的参数。

1.3 基于 PCA 响应函数的经验模型建立

响应函数的经验模型可通过结合公式(3)的通用 模型和已存在的 DoRF 中的数据建立。为了测试该 模型的可靠性,将 DoRF 中的响应曲线分为具有 175 条 响应曲线的训练集以及具有 26 条响应曲线的测试 集两部分,定义训练集合 $\{g_1, \dots, g_N\} \subset W_{RF}$,式中 N=175, W_{RF} 是定义的响应函数理论空间。

 W_{RF} 应是一个连续函数的空间,对训练集合{ g_1 , …, g_N }进行插值从而获得连续函数。基于公式(3)的 基本模式,需要进一步研究描述 W_{RF} 的低维近似模 型。首先应确定公式(3)中的基本函数 f_0 和参数集 { h_1, h_2, \dots, h_M },满足模型的均方根误差较低,可以通 过主成分分析法(PCA)对 DoRF 中的训练曲线集合 进行处理求解参数{ h_1, h_2, \dots, h_M }特征向量,PCA 基 本过程如下:

(1)对输入数据规范化,使得每个属性都落入相同的区间。

(2)PCA 计算 k 个标准正交向量, 作为规范化输 入数据的基,这些是单位向量,每一个都垂直于其他 向量,这些向量称为主成分。输入数据是主成分的线 性组合。

(3)对主成分按"重要性"或强度降序排列。主成 分本质上充当数据的新坐标系,提供关于方差的重 要信息。

(4)既然主成分根据重要性降序排列,因此可以 通过去掉较弱的成分即方差较小的那些来规约数 据。使用最强的主成分能够对原数据较好的近似 重构。

利用 PCA 获得的经验模型 EMoR 近似响应曲线 f 建立的模型 f 如公式(4)所示:

$$f = f_0 + Hc \tag{4}$$

式中: $H=\{h_1, h_2, \dots, h_M\}, c=H^{\mathsf{T}}(f-f_0)$ 是模型的参数。 **1.4 EMoR**模型单调性约束

由于响应函数具有单调递增的性质,利用单 调的约束条件能够将建立 EMoR 转换为求解一组 不等式最小二乘解的问题,从而求解多项式模型 的系数。

EMoR 近似模型f应满足响应函数单调性约束的性质。由于凸集的交集仍为凸集,所以单调递增的EMoR 空间是 $L_M := (f_0 + V_M) W_{RF}$ 凸的。 L_M 是凸的意味着 L_M 空间中仅有唯一的响应曲线模型 f^{MOR} 近似于待估计的响应曲线 f_o 、令 f^{mon} 是 EMoR 近似模型 f 的单调递增最小二乘近似模型。

如果 \hat{f}^{man} 是单调递增的,则其一阶导数是正的。 令 D 是离散倒数矩阵,则单调性约束令其变成不等 式的集合,即 $D\hat{f}^{man} \ge 0$ 。假设 $H \ge M$ 阶主成分分析 特征向量对应的参数矩阵,则 $\hat{f}^{man} = f_0 + H\hat{c}$,式中 $\hat{c} =$ arcmin_G || $Hc - f - f_0 ||^2$,则约束条件为:

$$DH\hat{c} \ge -f_0 \tag{5}$$

通过公式(5)可知求解模型参数*ĉ*变成了一个标 准的二次规划问题。

2 实验结果分析

由于响应函数是单调递增的,所以存在反函数 g=f⁻¹,从而可以利用建立逆相机响应函数通过采集 图像的强度信息获得相应的场景辐亮度信息。

2.1 针对信息量丰富的图像进行响应函数标定

采用尼康 D90 相机在相同的光照条件下通过设置不同的曝光时间获得不同曝光量图像,选取六帧曝光时间分别为 1/15 s、1/8 s、1/4 s、1/2 s、2 s 和 5 s 的图像如图 3 所示。

(a)曝光时间 1/15 s

(b)曝光时间 1/8 s(b) Exposure time is 1/8 s

(c)曝光时间 1/4 s (c) Exposure time is 1/4 s

(d) Exposure time is 1/2 s

(e) Exposure time is 2 s (f) Exposure time is 5 s 图 3 不同曝光量图像序列

Fig.3 Image sequence with different exposures

如前所述, W_{RF} 是一个凸集, 则其均值(1/N) $\sum_{n=1}^{n} g_n$

也是一个响应函数,所以可定义公式(3)中的 g_0 为曲 线集合的均值,即 W_{RF} 空间的零阶近似,拟合曲线如 图 4(a)所示。利用主成分分析法(PCA)对 DoRF 训练 集合空间中的曲线进行处理获得逆相机响应函数经 验参数模型 EMoR 中对应的特征向量,即 $g(B)=g_0(B)+$ $\sum_{n}^{M} c_n h_n^{\text{inv}}(B)$ 中的 $\{h_1, h_2, h_3, \cdots, h_n\}$,其中 5 个最大特

Inverse camera response

-0.20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness

(c)图 3(c)和图 3(d)标定结果

(c) Curve of Fig.3(c) and Fig.3(d)

Inverse camera response

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized brightness

(f)图 3(d)和图 3(f)标定结果

(f) Curve of Fig.3(d) and Fig.3(f)

1.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

-0.2 -0.40

0.1

Irradiance

图 5 M 为 3 时不同曝光量图像的响应函数标定曲线

Fig.5 Camera response curves calibrated by images with different exposure when M is 3

1026001-5

标定曲线如图 5(d)所示,相应的参数 C 如表 1 第 4行 所示;选取图 3(d)与(e)进行响应函数标定,曝光量 之比 k=(1/2)/2=4,响应函数标定曲线如图 5 (e)所 示,相应的参数 C 如表 1 第 5 行所示;选取图 3(d)与 (f)进行响应函数标定,曝光量之比 k=(1/2)/5=10,响 应函数标定曲线如图 5(f)所示,相应的参数 C 如表1 第 6 行所示。

M为3时利用不同曝光量图像标定响应函数模型参数如表1所示,模型参数均保留4位小数。

当设定 *M* 为 5 时,选取图 3 中两帧不同曝光量的图像进行相机响应函数标定。选取图 3(a)与(d)进

行响应函数标定,曝光量之比 k=(1/2)/(1/15)=7.5,响 应函数标定曲线如图 6(a)所示,相应的参数 C 如表2 第 1 行所示;选取图 3(b)与图 3(d)进行响应函数标 定,曝光量之比 k=(1/2)/(1/8)=4,响应函数标定曲线 如图 6(b)所示,相应的参数 C 如表 2 第 2 行所示;选 取图 3(c)与(d)进行响应函数标定,曝光量之比 k= (1/2)/(1/4)=2,响应函数标定曲线如图 6(c)所示,相 应的参数 C 如表 2 第 3 行所示;选取图 3(c)与(e)进 行响应函数标定,曝光量之比 k=2/(1/4)=8,响应函 数标定曲线如图 6(d)所示,相应的参数 C 如表 2 第 4 行所示;选取图 3(d)与(e)进行响应函数标定,曝光

Tab.1	Parameters	for	the	camera	response	function	when	М	is	3
-------	------------	-----	-----	--------	----------	----------	------	---	----	---

Fig.6 Camera response curves calibrated by images with different exposure when M is 5

第10期

表 2 M 为 5 相机响应函数模型参数

Tab.2	Parameters	for	the	camera	response	function	when	М	is	5
-------	-------------------	-----	-----	--------	----------	----------	------	---	----	---

No.	Different input images	C_1	C_2	C_3	C_4	C_5
1	Curve of Fig.3(a) and Fig.3(d)/ $k=7.5$	10.476 4	-5.566 8	3.308 9	-0.980 5	0.635 9
2	Curve of Fig.3(b) and Fig.3(d)/k=4	$10.126 \ 0$	-4.764 1	2.193 4	-0.250 1	0.200 8
3	Curve of Fig.3(c) and Fig.3(d)/k=2	9.983 7	-4.167 8	$1.247\ 2$	0.384 8	-0.438 9
4	Curve of Fig.3(c) and Fig.3(e)/k=8	10.200 8	-5.589 4	4.179 4	-0.987 3	1.312 9
5	Curve of Fig.3(d) and Fig.3(e)/k=4	9.958 0	-5.044 4	4.112 6	-1.118 7	1.733 2
6	Curve of Fig.3(d) and Fig.3(f)/k=10	7.879 7	-4.599 9	3.637 3	-2.703 4	1.249 1

量之比 *k*=(1/2)/2=4,响应函数标定曲线如图 6(e)所示,相应的参数 *C* 如表 2 第 5 行所示;选取图 3(d)与(f)进行响应函数标定,曝光量之比 *k*=(1/2)/5=10,响应函数标定曲线如图 6(f)所示,相应的参数 *C* 如表 2 第 6 行所示。

*M*为5时利用不同曝光量图像标定响应函数模型参数如表2所示,模型参数均保留4位小数。

从图 5 及图 6 中可以观察到利用同一拍摄序列 中任意两帧不同曝光量的图像标定的尼康 D90 相机 响应曲线基本符合相机响应函数的固定不变、非线 性、光滑连续以及单调递增的特征及约束条件。图 5 中(a)、(b)、(c)三组曲线更加满足相机响应函数固 有的固定不变、非线性、光滑连续以及单调递增 的性质,图6中(b)、(c)两组曲线也能够较为理想 的满足固定不变、非线性、光滑连续以及单调递 增的性质,验证算法有效性的同时也说明输入图 像的选取对后续响应函数标定的精度具有影响。 分析不同维度参数模型较为理想的标定曲线可以 发现当输入图像曝光量设置较为合理,即图像能 够较为理想的反映拍摄场景信息时如图 3 (c)及 (d),后续标定的响应函数曲线精度更高,能够更 加理想地满足响应函数的固有性质及约束条件, 从而获得精度较高的相机响应函数近似模型。所 以在选择不同曝光量图像进行相机响应函数标定 时需尽量选择曝光量较为合适且能够反映场景信 息的图像,避免利用欠曝光及过饱和的图像作为 输入进行响应函数标定。

比较图 5 和图 6 以及表 1 和表 2 中的参数可以 发现 M 为 3 时即利用 EMoR 中 $\{h_1, h_2, h_3\}$ 能够较为 理想地进行相机相应函数标定,从而较大的可以提 高计算效率。

2.2 针对信息量较为单一的图像进行响应函数标定

目前常用的相机响应函数标定算法多是针对信息 量较为丰富的图像如图 3 所示,文中提出的算法通过 2.1 节已经证明能够对信息量较为丰富的图像进行相 机响应函数标定。但实际拍摄的场景往往信息量较为 单一,为验证文中提出算法能够对信息量较为单一的 图像进行响应函数标定,采用尼康 D90 相机在相同的 光照条件下针对信息量较为单一的场景拍摄不同曝 光量图像,选取六帧曝光时间分别为 1/500s、1/200s、 1/100s、1/25s、1/10s 和 1/2s 的图像如图 7 所示。

根据 2.1 节中的分析, *M*=3 的经验参数模型标 定的响应函数足以描述成像系统的近似响应函数, 设定 *M* 为 3,选取图 7 中两帧不同曝光量的图像进 行相机响应函数标定。选取图 7(a)与(c)进行响应函 数标定,曝光量之比 *k*=(1/100)/(1/500)=5,响应函数 标定曲线如图 8(a)所示,相应的参数 *C* 如表 3 第 1 行 所示;选取图 7(b)与(c)进行响应函数标定,曝光量之 比 *k*=(1/100)/(1/200)=2,响应函数标定曲线如图 8 (b)所示,相应的参数 *C* 如表 3 第 2 行所示;选取图 7 (b)与(d)进行响应函数标定,曝光量之比 *k*=(1/25)/ (1/200)=8,响应函数标定曲线如图 8(c)所示,相应的 参数 C 如表 3 第 3 行所示;选取图 7(c)与图7(d)进行 响应函数标定,曝光量之比 k=(1/25)/(1/100)=4,响 应函数标定曲线如图 8(d)所示,相应的参数 C 如 表 3 第 4 行所示;选取图 7(c)与(e)进行响应函数标 定,曝光量之比 k=(1/10)/(1/100)=10,响应函数标定 曲线如图 8(e)所示,相应的参数 C 如表 3 第 5 行所 示;选取图 7(d)与(e)进行响应函数标定,曝光量之 比 k=(1/10)/(1/25)=2.5,响应函数标定曲线如图 8(f) 所示,相应的参数 C 如表 3 第 6 行所示。

利用不同曝光量图像标定响应函数模型参数如 表 3 所示,模型参数均保留 4 位小数。

表 3 M 为 3 相机响应函数模型参数

	Tab.3 Parameters for	the camera	response fur	nction when M	is 3
--	----------------------	------------	--------------	---------------	------

No.	Different inpu	t images	C_1		C_2	C_3
1	Curve of Fig.7(a) an	d Fig.7(c)/k=5	9.634 6		-5.736 4	4.784 0
2	Curve of Fig.7(b) an	d Fig.7(c)/k=2	5.612 0		-0.128 0	0.722 5
3	Curve of Fig.7(b) an	d Fig.7(d)/k=8	9.810 0		-4.038 5	$3.124\ 4$
4	Curve of Fig.7(c) an	d Fig.3(d)/k=4	9.207 4		-2.990 3	2.552 6
5	Curve of Fig.7(c) and	d Fig.7(e)/k=10	9.846 7		-4.480 9	2.723 7
6	Curve of Fig.7(d) and	l Fig.7(e)/ <i>k</i> =2.5	8.114 9		-4.896 01	0.556 0
Inverse came	ra response	1 2 Inverse camera r	esponse	1.2	Inverse ca	mera response
0.1 0.2 0.3 0.4 0.5 Normalized b (a)图 7(a)和图 7(c)	Normalized irradiance	1.0 0.8 0.6 0.4 0.2 0 -0.2 0 0.1 0.2 0.3 0.4 0.5 0 Normalized bri (b)图 7(b)和图 7(c)核	6 0.7 0.8 0.9 1.0 ghtness 示定结果	1.0 -0.2 -0.2 -0.2) 0.1 0.2 0.3 0.4 Normalize (c)图 7(b)和图 3	0.5 0.6 0.7 0.8 0.9 1.0 dbrightness 7(d)标定结果
(a) Curve of Fig.7(a) a	and Fig.7(c)	(b) Curve of Fig.7(b) an	d Fig.7(c)		(c) Curve of Fig.7(b) and Fig.7(d)
Inverse camera 0.1 0.2 0.3 0.4 0.5 Normalized b (d)图 7(c)和图 7(d)	a response a response	Inverse camera 1.2 1.0 0.8 0.6 0.4 0.2 0 -0.2 0	response 	1.2 1.0 -0.0 Normalized irradiance -0.0 -0.2 -0.2	Inverse can 0 0.1 0.2 0.3 0.4 Normalize (f)图 7(d)和图 7	nera response 0.5 0.6 0.7 0.8 0.9 1.0 2d brightness 7(e)标定结果
(d) Curve of Fig. 7(c) a	and Fig.7(d)	(e) Curve of Fig.7(c) and	d Fig.7(e)		(f) Curve of Fig.7(d) and Fig. 7(e)
	No. 1 2 3 4 5 6 Inverse came 0.1 0.2 0.3 0.4 0.5 Normalized b (a)图 7(a)和图 7(c) (a) Curve of Fig.7(a) Inverse camera 0.1 0.2 0.3 0.4 0.5 Normalized b (d)图 7(c)和图 7(d)	No. Different input 1 Curve of Fig.7(a) and 2 Curve of Fig.7(b) and 3 Curve of Fig.7(c) and 5 Curve of Fig.7(c) and 6 Curve of Fig.7(d) and Inverse camera response 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (a) Curve of Fig.7(c) Inverse camera response Inverse camera response <td>No. Different input images 1 Curve of Fig.7(a) and Fig.7(c)/k=5 2 Curve of Fig.7(b) and Fig.7(c)/k=2 3 Curve of Fig.7(c) and Fig.7(d)/k=8 4 Curve of Fig.7(c) and Fig.3(d)/k=4 5 Curve of Fig.7(c) and Fig.7(e)/k=10 6 Curve of Fig.7(c) and Fig.7(e)/k=2.5 Inverse camera response Inverse camera response 0.1 0.2 0.3 0.4 0.5 0.6 0.4 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.6 0.4 0.2 0.3 0.4 0.5 0 Normalized brightops (a) Curve of Fig.7(a) and Fig.7(c) Inverse camera 1.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6</td> <td>No. Different input images C₁ 1 Curve of Fig.7(a) and Fig.7(c)/k=5 9.634 6 2 Curve of Fig.7(b) and Fig.7(c)/k=2 5.612 0 3 Curve of Fig.7(b) and Fig.7(c)/k=8 9.810 0 4 Curve of Fig.7(c) and Fig.7(c)/k=10 9.846 7 5 Curve of Fig.7(c) and Fig.7(c)/k=2.5 8.114 9 1 Inverse camera response 1 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 Normalized brightness (a) Curve of Fig.7(c) 1 (a) Curve of Fig.7(c) Inverse camera response 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (b) I 7(c) 标定结果 1 (a) Curve of Fig.7(a) and Fig.7(c) Inverse camera response 1 10 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (b) I 7(c) MI I 7(c) 标定结果 1 1 (a) Curve of Fig.7(a) and Fig.7(c) 1 1 1 10 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>No. Different input images C_1 1 Curve of Fig.7(a) and Fig.7(c)/k=5 9.634 6 2 Curve of Fig.7(b) and Fig.7(c)/k=2 5.612 0 3 Curve of Fig.7(b) and Fig.7(c)/k=3 9.810 0 4 Curve of Fig.7(c) and Fig.3(d)/k=4 9.207 4 5 Curve of Fig.7(c) and Fig.7(c)/k=10 9.846 7 6 Curve of Fig.7(c) and Fig.7(c)/k=2.5 8.114 9 Inverse camera response 10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 <td< td=""><td>No. Different input images C1 C2 1 Curve of Fig.7(a) and Fig.7(c)/k=5 9.634 6 -5.736 4 2 Curve of Fig.7(b) and Fig.7(c)/k=2 5.612 0 -0.128 0 3 Curve of Fig.7(b) and Fig.7(c)/k=8 9.810 0 -4.038 5 4 Curve of Fig.7(c) and Fig.3(d)/k=4 9.207 4 -2.990 3 5 Curve of Fig.7(c) and Fig.7(c)/k=2.5 8.114 9 -4.839 6 01 Inverse camera response 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (a) Curve of Fig.7(c) (b) Curve of Fig.7(c) and Fig.7(c) Inverse camera response 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (b) BT (t) All BT (c) Fig.2fsl # (c) Curve of Fig.7(c) Normalized brightness (b) BT (t) All BT (c) Fig.2fsl # (c) Curve of Fig.7(c) 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (c) Curve of Fig.7(c) 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (c) Curve of Fig.7(c) 1.0</td></td<></td>	No. Different input images 1 Curve of Fig.7(a) and Fig.7(c)/k=5 2 Curve of Fig.7(b) and Fig.7(c)/k=2 3 Curve of Fig.7(c) and Fig.7(d)/k=8 4 Curve of Fig.7(c) and Fig.3(d)/k=4 5 Curve of Fig.7(c) and Fig.7(e)/k=10 6 Curve of Fig.7(c) and Fig.7(e)/k=2.5 Inverse camera response Inverse camera response 0.1 0.2 0.3 0.4 0.5 0.6 0.4 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.6 0.4 0.2 0.3 0.4 0.5 0 Normalized brightops (a) Curve of Fig.7(a) and Fig.7(c) Inverse camera 1.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	No. Different input images C ₁ 1 Curve of Fig.7(a) and Fig.7(c)/k=5 9.634 6 2 Curve of Fig.7(b) and Fig.7(c)/k=2 5.612 0 3 Curve of Fig.7(b) and Fig.7(c)/k=8 9.810 0 4 Curve of Fig.7(c) and Fig.7(c)/k=10 9.846 7 5 Curve of Fig.7(c) and Fig.7(c)/k=2.5 8.114 9 1 Inverse camera response 1 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 Normalized brightness (a) Curve of Fig.7(c) 1 (a) Curve of Fig.7(c) Inverse camera response 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (b) I 7(c) 标定结果 1 (a) Curve of Fig.7(a) and Fig.7(c) Inverse camera response 1 10 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (b) I 7(c) MI I 7(c) 标定结果 1 1 (a) Curve of Fig.7(a) and Fig.7(c) 1 1 1 10 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	No. Different input images C_1 1 Curve of Fig.7(a) and Fig.7(c)/k=5 9.634 6 2 Curve of Fig.7(b) and Fig.7(c)/k=2 5.612 0 3 Curve of Fig.7(b) and Fig.7(c)/k=3 9.810 0 4 Curve of Fig.7(c) and Fig.3(d)/k=4 9.207 4 5 Curve of Fig.7(c) and Fig.7(c)/k=10 9.846 7 6 Curve of Fig.7(c) and Fig.7(c)/k=2.5 8.114 9 Inverse camera response 10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 <td< td=""><td>No. Different input images C1 C2 1 Curve of Fig.7(a) and Fig.7(c)/k=5 9.634 6 -5.736 4 2 Curve of Fig.7(b) and Fig.7(c)/k=2 5.612 0 -0.128 0 3 Curve of Fig.7(b) and Fig.7(c)/k=8 9.810 0 -4.038 5 4 Curve of Fig.7(c) and Fig.3(d)/k=4 9.207 4 -2.990 3 5 Curve of Fig.7(c) and Fig.7(c)/k=2.5 8.114 9 -4.839 6 01 Inverse camera response 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (a) Curve of Fig.7(c) (b) Curve of Fig.7(c) and Fig.7(c) Inverse camera response 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (b) BT (t) All BT (c) Fig.2fsl # (c) Curve of Fig.7(c) Normalized brightness (b) BT (t) All BT (c) Fig.2fsl # (c) Curve of Fig.7(c) 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (c) Curve of Fig.7(c) 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (c) Curve of Fig.7(c) 1.0</td></td<>	No. Different input images C1 C2 1 Curve of Fig.7(a) and Fig.7(c)/k=5 9.634 6 -5.736 4 2 Curve of Fig.7(b) and Fig.7(c)/k=2 5.612 0 -0.128 0 3 Curve of Fig.7(b) and Fig.7(c)/k=8 9.810 0 -4.038 5 4 Curve of Fig.7(c) and Fig.3(d)/k=4 9.207 4 -2.990 3 5 Curve of Fig.7(c) and Fig.7(c)/k=2.5 8.114 9 -4.839 6 01 Inverse camera response 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (a) Curve of Fig.7(c) (b) Curve of Fig.7(c) and Fig.7(c) Inverse camera response 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (b) BT (t) All BT (c) Fig.2fsl # (c) Curve of Fig.7(c) Normalized brightness (b) BT (t) All BT (c) Fig.2fsl # (c) Curve of Fig.7(c) 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (c) Curve of Fig.7(c) 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Normalized brightness (c) Curve of Fig.7(c) 1.0

Fig.8 Camera response curves calibrated by images with different exposure when M is 3

图 8 中标定的尼康 D90 相机响应函数对比图 5 及图 6 可以看出 2.1 及 2.2 节中三组实验获得的 D90 相机响应函数基本一致,满足了相机响应函数 固定不变的性质,同时三组实验中标定的响应函数 均满足非线性、光滑连续以及单调递增的约束条 件,从而验证了文中提出算法的有效性,能够对任 意场景无论信息量丰富与否进行高精度的相机响 应函数标定。

通过图 8 可以观察到文中提出的算法对信息量 较为单一的图像同样能够进行相机响应函数的标定, 图 8(c)、(d)及(e)中的曲线较为理想,证明了 3.1 节中 分析的输入图像需要曝光较为合适的能够反映场景信 息的图像,从而能够提高相机响应函数标定的精度。

3 结 论

相机响应函数能够反映获得的图像与场景辐亮 度之间严格的映射关系,是高动态范围图像处理领 域的重要技术环节。文中通过主成分分析法(PCA)对 已经标定的响应函数数据库(DoRF)进行分析获得参 数模型的主成分参量,结合相机响应函数固有性质 的约束条件建立响应函数的低参数经验模型 EMoR.利用最小二乘法对多曝光输入图像计算各主 成分参量对应的系数,从而获得描述成像系统的低 维近似响应函数模型。该算法能够对任意成像系统、 任意场景包括信息量单一的场景图像进行相机响应 函数的标定,保持高精度的同时计算效率也较高,通 过实验证明利用该算法标定的响应函数满足相机响 应函数具有的固定不变、非线性、光滑连续以及单调 递增的性质。在选取两帧不同曝光量的图像作为输 入图像时,通过实验分析应选择相对曝光量较为合 适的输入图像,曝光量过饱和和欠饱和的图像会影 响响应函数的标定精度。在后续的工作中需进一步 研究如何提高该相机响应函数标定算法的精度以及 降低对输入图像曝光量的约束条件。

参考文献:

[1] Reinhard E, Ward G, Pattanaik S, et al. High Dynamic Range

Imaging: Acquisition, Display and Image-based Lighting [M] 2nd ed. US: Morgan Kaufmann, 2010.

- [2] Grossberg M D, Nayar S K. Radiometric response from images[C]//Proc Euro Conf on Comp. 2002: 189–205.
- [3] Mann S, Mann R. Quantigraphic imaging: estimating the camera response and exposures from differently exposed images[C]//Computer Vision and Pattern Recognition, 2001: 842–849.
- [4] MMitsunaga T, Nayar S K. High dynamic range imaging: spatially varying pixel exposures[C]//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 2000: 472–479.
- [5] Grossberg M D, Nayar S K. Radiometric self calibaration[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1993: 374–380.
- [6] Mann S, Picard R W. On being 'undigital'with digital cameras: extending dynamic range by combining differently exposed pictures [C]//IS&T's 48th Annual Conference, 1995: 422–428.
- [7] Debevec P E, Malik J. Recovering high dynamic range radiance maps from photographs[C]//Siggraph 97 Conf Pro, Computer Graphics Annual Conf. Series, 1997: 369–378.
- [8] Grossberg M D, Nayar S K. Modeling the space of camera response functions [J]. *Pattern Analysis and Machine Intelligence*, 2004, 10(26): 1272–1282.
- Zhang Weixiang, Hou Bingfeng. A robust HDR image calibration algorithm for camera response function [J]. *Chinese Journal of Computers*, 2006, 29 (4): 658–663. (in Chinese)
- [10] Shu Ni, Chen Xiaowei. New method of recovering response curve in process of HDRI constructing[J]. *Computer Engineering and Design*, 2012, 33(3): 1032–1036. (in Chinese)
- [11] Tai Y W, Kim S Y, Yang J, et al. Nonlinear Camera response functions and image deblurring: theoretical analysis and practice [J]. *IEEE Ttransactions on Pattern Analysis* and Machine Intelligence, 2013, 10(35): 2498–2511.
- [12] Kan Weiran, Fang Xianyong. Camera response function estimation method for motion blurred image [J]. Computer Engineering, 2014, 10(40): 232–238. (in Chinese)